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Summary. A graph is a structure composed of a set of vertices (i.e. nodes, dots)
connected to one another by a set of edges (i.e. links, lines). The concept of a graph
has been around since the late 19th century, however, only in recent decades has there
been a strong resurgence in both theoretical and applied graph research in mathe-
matics, physics, and computer science. In applied computing, since the late 1960s,
the interlinked table structure of the relational database has been the predominant
information storage and retrieval model. With the growth of graph/network-based
data and the need to efficiently process such data, new data management systems
have been developed. In contrast to the index-intensive, set-theoretic operations of
relational databases, graph databases make use of index-free, local traversals. This
article discusses the graph traversal pattern and its use in computing.

1 Introduction

The first paragraph of any publication on graphs usually contains the iconic
G = (V,E) definition of a graph. This definition states that a graph is com-
posed of a set of vertices V and a set of edges E. Normally following this
definition is the definition of the set E. For directed graphs, E ⊆ (V × V )
and for undirected graphs, E ⊆ {V ×V }. That is, E is a subset of all ordered
or unordered permutations of V element pairings. From a purely theoreti-
cal standpoint, such definitions are usually sufficient for deriving theorems.
However, in applied research, where the graph is required to be embedded in
reality, this definition says little about a graph’s realization. The structure a
graph takes in the real-world determines the efficiency of the operations that
are applied to it. It is exactly those efficient graph operations that yield an
unconventional problem-solving style. This style of interaction is dubbed the
graph traversal pattern and forms the primary point of discussion for this
article.3

3 The term pattern refers to data modeling/processing patterns found in computing
such as the relational pattern, the map-reduce pattern, etc. In this sense, a pattern
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2 The Realization of Graphs

Relational databases have been around since the late 1960s [2] and are to-
days most predominate data management tool. Relational databases main-
tain a collection of tables. Each table can be defined by a set of rows and a
set of columns. Semantically, rows denote objects and columns denote prop-
erties/attributes. Thus, the datum at a particular row/column-entry is the
value of the column property for that row object. Usually, a problem domain
is modeled over multiple tables in order to avoid data duplication. This pro-
cess is known as data normalization. In order to unify data in disparate tables,
a “join” is used. A join combines two tables when columns of one table refer to
columns of another table. Maintaining these references in a consistent state is
known as a referential integrity. This is the classic relational database design
which affords them their flexibility [11].

In stark contrast, graph databases do not store data in disparate tables.
Instead there is a single data structure—the graph. Moreover, there is no
concept of a “join” operation as every vertex and edge has a direct refer-
ence to its adjacent vertex or edge. The data structure is already “joined” by
the edges that are defined. There are benefits and drawbacks to this model.
First, the primary drawback is that its difficult to shard a graph (a difficulty
also encountered with relational databases that maintain referential integrity).
Sharding is the process of partitioning data across multiple machines in or-
der to scale a system horizontally.4 In a graph, with unconstrained, direct
references between vertices and edges, there usually does not exist a clean
data partition. Thus, it becomes difficult to scale graph databases beyond the
confines of a single machine and at the same time, maintain the speed of a
traversal across sharded borders. However, at the expense of this drawback
there is a significant advantage: there is a constant time cost for retrieving an
adjacent vertex or edge. That is, regardless of the size of the graph as a whole,
the cost of a local read operation at a vertex or edge remains constant. This
benefit is so important that it creates the primary means by which users inter-
act with graph databases—traversals. Graphs offer a unique vantage point on
data, where the solution to a problem is seen as abstractly defined traversals
through its vertices and edges.5

is a way of approaching a data-centric problem that usually has benefits in terms
of efficiency and/or expressibility.

4 Sharding is easily solved by other database architectures such as key/value stores
[3] and document databases [8]. In such systems, there is no explicit linking be-
tween data in different “collections” (i.e. documents, key/value pairs). Strict par-
titions of data make it easier to horizontally scale a database [18].

5 The space of graph databases is relatively new. While it is possible to model and
process a graph in most any type of database (e.g. relational databases, key/value
stores, document databases), a graph database, in the context of this article, is
one that makes use of direct references between adjacent vertices and edges. As
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2.1 The Indices of Relational Tables

Imagine that there is a gremlin who is holding a number between 1 and 100 in
memory. Moreover, assume that when guessing the number, the gremlin will
only reply by saying whether the guessed number is greater than, less than, or
equal to the number in memory. What is the best strategy for determining the
number in the fewest guesses? On average, the quickest way to determine the
number is to partition the space of guesses into equal size chunks. For example,
ask if the number is 50. If the gremlin states that its less than 50, then ask,
is the number 25? If greater than 25, then ask, is the number 37? Follow
this partition scheme until the number is converged upon. The structure that
these guesses form over the sequence from 1 to 100 is a binary search tree. On
average, this tree structure is more efficient in time than guessing each number
starting from 1 and going to 100. This is ultimately the difference between
an index-based search and a linear search. If there were no indices for a set,
every element of the set would have to be examined to determine if it has a
particular property of interest.6 For n elements, a linear scan of this nature
runs in O(n). When elements are indexed, there exists two structures—the
original set of elements and an index of those elements. Typical indices have
the convenient property that searching them takes O(log2n). For massive sets,
the space that indices take is well worth their weight in time.

Relational databases take significant advantage of such indices. It is
through indices that rows with a column value are efficiently found. More-
over, the index makes it possible to efficiently join tables together in order to
move between tables that are linked by particular columns. Assume a simple
example where there are two tables: a person table and a friend table. The
person table has the following two columns: unique identifier and name.
The friend table has the following two columns: person a and person b. The
semantics of the friend table is that person a is friends with person b. Sup-
pose the problem of determining the name of all of Alberto Pepe’s friends.
Figure 1 and the following list breaks down this simple query into all the
micro-operations that must occur to yield results.7

1. Query the person.name index to find the row in person with the name

“Alberto Pepe.” [O(log2n)]
2. Given the person row returned by the index, get the identifier for that

row.[O(1)]

such, graph databases are those systems that are optimized for graph traversals.
The Neo4j graph database is an example of such a database [7].

6 In a relational database, this process is known as a full table scan.
7 Assume that the number of rows in person is n and the number of rows in friend

is m. Moreover, for the sake of simplicity, assume that names, like identifiers, in
the person table are unique.
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person.identifier index person.name index friend.person_a index

identifier name person_a person_b
1

2

3

4

Alberto Pepe

...

...

...

1

1

1

2

3

4
... ...

Fig. 1. A table representation of people and their friends.

3. Query the friend.person a index to find all the rows in friend with the
identifier from previous. [O(log2x) : x� m]8

4. Given each of the k rows returned, get the person b identifier for those
rows. [O(k)]

5. For each k friend identifiers, query the person.identifier index for the
row with friend identifier. [O(k log2n)]

6. Given the k person rows, get the name value for those rows. [O(k)]

The final operation yields the names of Alberto’s friends. This example elu-
cidates the classic join operation utilized in relational databases. By being
able to join the person and friend table, its possible to move from a name,
to the person, to his or her friends, and then, ultimately, to their names. In
effect, the join operation forms a graph that is dynamically constructed as
one table is linked to another table. While having the benefit of being able to
dynamically construct graphs, the limitation is that this graph is not explicit
in the relational structure, but instead must be inferred through a series of
index-intensive operations. Moreover, while only a particular subset of the
data in the database may be desired (e.g. only Alberto’s friend’s), all data
in all queried tables must be examined in order to extract the desired subset
(e.g. all friends of all people). Even though a O(log2n) read-time is fast for
a search, as the the indices grow larger with the growth of the data and as
more join operations are used, this model becomes inefficient. At the limit, the
inferred graph that is constructed through joins is best solved (with respects
to time), by a graph database.

8 Given that an individual will have many friends, the number of index nodes in
the friend.person a index will be much less than m.
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2.2 The Graph as an Index

Most of graph theory is concerned with the development of theorems for single-
relational graphs [1]. A single-relational graph maintains a set of edges, where
all the edges are homogeneous in meaning. For example, all edges denote
friendship or kinship, but not both together within the same structure. In
application, complex domain models are more conveniently represented by
multi-relational, property graphs.9 The edges in a property graph are typed
or labeled and thus, edges are heterogenous in meaning. For example, a prop-
erty graph can model friendship, kinship, business, communication, etc. re-
lationships all within the same structure. Moreover, vertices and edges in a
property graph maintain a set of key/value pairs. These are known as proper-
ties and allow for the representation of non-graphical data—e.g. the name of
a vertex, the weight of an edge, etc. Formally, a property graph can be defined
as G = (V,E, λ, µ), where edges are directed (i.e. E ⊆ (V × V )), edges are
labeled (i.e. λ : E → Σ), and properties are a map from elements and keys to
values (i.e. µ : (V ∪ E)×R→ S).

In the property graph model, it is common for the properties of the ver-
tices (and sometimes edges) to be indexed using a tree structure analogous,
in many ways, to those used by relational databases. This index can be rep-
resented by some external indexing system or endogenous to the graph as
an embedded tree (see §3.2).10 Given the prior situation, once a set of ele-
ments have been identified by the index search, then a traversal is executed
through the graph.11 Elements in a graph are adjacent to one another by di-
rect references. A vertex is adjacent to its incoming and outgoing edges and
an edge is adjacent to its outgoing (i.e. tail) and incoming (i.e. head) ver-
tices. The domain model defines how the elements of the problem space are
related. Similar to the gremlin stating that 50 is greater than the number to
be guessed, an edge connecting vertex i and j and labeled friend states that
vertex i is friend related to vertex j. Indices create “short cuts” in the graph
as they partition elements according to specialized, compute-centric semantics
(e.g. numbers being less than or greater than another). Likewise, a domain

9 In the parlance of graphs, a property graph is a directed, edge-labeled, attributed
multi-graph. For the sake of simplicity, such structures will simply be called prop-
erty graphs. These types of graph structures are used extensively in computing
as they are more expressive than the simplified mathematical objects studied in
theory. However, note that expressiveness is defined by ease of use, not by the
limits of what can be modeled [15].

10 The reason for using an external indexing system is that it may be optimized for
certain types of lookups such as full-text search.

11 This is ultimately what is accomplished in a relational database when a row of
a table is located and a value in a column of that row is fetched (e.g. see the
second micro-operation of the relational database enumeration previous). How-
ever, when that row doesn’t have all the requisite data (usually do to database
normalization), it requires the joining with another table to locate that data. It
is this situation which is costly in a relational database.
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model partitions elements using semantics defined by the domain modeler.
Thus, in many ways, a graph can be seen as an indexing structure.

In the relational example previous, a person in the person table has two
properties: a unique identifier and a name. The analogue in a property
graph would be to have the identifier and name values represented as vertex
properties. Moreover, the friend table would not exist as a table, but as direct
friend-labeled edges between vertices. This idea is diagrammed in Figure 2.
The micro-operations used to find the name of all of Alberto Pepe’s friends
are provided in the following enumeration.

1

name=Alberto Pepe

2

name=...

3

name=...

4

name=...

...

friend

friend

friend

...

vertex.name index

Fig. 2. A graph representation of people and their friends. Given the tree-nature
of the vertex.name index, it is possible, and many times useful to model the index
endogenous to the graph (see §3.2).

1. Query the vertex.name index to find all the vertices in G with the name
“Alberto Pepe.” [O(log2n)]

2. Given the vertex returned, get the k friend edges emanating from this
vertex. [O(k + x)]12

3. Given the k friend edges retrieved, get the k vertices on the heads of
those edges. [O(k)]

4. Given these k vertices, get the k name properties of these vertices.
[O(ky)]13

12 If a graph database does not index the edges of a vertex by their labels, then a
linear scan of all edges emanating from a vertex must occur to locate the set of
friend-labeled edges. Thus, k + x is the total number of edges emanating from
the current vertex.

13 If a graph database does not index the properties of a vertex, then a linear scan
of all the properties must occur. If y is the total number of properties on the
vertices (assuming a homogenous count for all vertices), then, in the worst case
scenario, ky elements must be examined.
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The final operation yields the names of Alberto’s friends. In a graph database,
there is no explicit join operation because vertices maintain direct references
to their adjacent edges. In many ways, the edges of the graph serve as explicit,
“hard-wired” join structures (i.e. structures that are not computed at query
time as in a relational database). The act of traversing over an edge is the
act of joining. However, what makes this more efficient in a graph database
is that traversing from one vertex to another is a constant time operation.
Thus, traversal time is defined solely by the number of elements touched by
the traversal. This is irrespective of the size/topology of the graph as a whole.
The time it takes to make a single step in a traversal is determined by the local
topology of the subgraph surrounding the particular vertex being traversed
from.14

The real power of graph databases makes itself apparent when traversing
multiple steps in order to unite disparate vertices by a path (i.e. vertices not
directly connected). First, there are no O(log2n) operations. Second, the type
of path taken, defines the “higher order,” inferred relationship that exists
between two vertices.15 Traversals based on abstractly defined paths is the
core of the graph traversal pattern. The next section discusses the graph
traversal pattern and its application to common problem-solving situations.

3 Graph Traversals

A traversal refers to visiting elements (i.e. vertices and edges) in a graph
in some algorithmic fashion.16 This section will present a functional, flow-
based approach [13] to traversing property graphs and how different types
of traversals over different types of graph datasets support different types of
problem-solving.

The most primitive, read-based operation on a graph is a single step traver-
sal from element i to element j, where i, j ∈ (V ∪E).17 For example, a single
step operation can answer questions such as “which edges are outgoing from
this vertex?”, “which vertex is at the head of this edge?”, etc. Single step
operations expose explicit adjacencies in the graph (i.e. adjacencies that are

14 The consequence of this is that traversing through a “super node” (i.e. a high-
degree vertex) in a graph is slower than traversing through a small-degree vertex.

15 In many ways, this is the graph equivalent of the join operation used by relational
databases—though no global indices are used. When traversing a multi-step path,
the source and sink vertices are united by a semantic determined by the path
taken. For example, going from a person, to their friends, and then to their friends
friends, will unite that person to people two-steps away in the graph. This popular
path is known FOAF (friend of a friend).

16 In general, the term “algorithm” is used in a looser sense than the classic definition
in that it allows for randomization and sampling when traversing.

17 While it is possible to write and delete elements from a graph, such operations
will not be discussed.
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“hard-wired”). The following list itemizes the various types of single step
traversals. Note that these operations are defined over power multiset do-
mains and ranges.18 The reason for this is that is naturally allows for function
composition, where a composition is a formal description of a traversal.19

• eout : P̂(V )→ P̂(E): traverse to the outgoing edges of the vertices.
• ein : P̂(V )→ P̂(E): traverse to the incoming edges to the vertices.
• vout : P̂(E) → P̂(V ): traverse to the outgoing (i.e. tail) vertices of the

edges.
• vin : P̂(E)→ P̂(V ): traverse the incoming (i.e. head) vertices of the edges.
• ε : P̂(V ∪E)×R→ P̂(S): get the element property values for key r ∈ R.

When edges are labeled and elements have properties, it is desirable to con-
strain the traversal to edges of a particular label or elements with particular
properties. These operations are known as filters and are abstractly defined
in the following itemization.20

• elab± : P̂(E)×Σ → P̂(E): allow (or filter) all edges with the label σ ∈ Σ.
• εp± : P̂(V ∪ E) × R × S → P̂(V ∪ E): allow (or filter) all elements with

the property s ∈ S for key r ∈ R.
• εε± : P̂(V ∪ E)× (V ∪ E)→ P̂(V ∪ E): allow (or filter) all elements that

are the provided element.

Through function composition, we can define graph traversals of arbitrary
length. A simple example is traversing to the names of Alberto Pepe’s friends.
If i is the vertex representing Alberto Pepe and

f : P̂(V )→ P̂(S),

where
f(i) = ε (vin (elab+ (eout(i), friend)) ,name) ,

then f(i) will return the names of Alberto Pepe’s friends. Through function
currying and composition, the previous definition can be represented more
clearly with the following function rule,

f(i) =
(
εname ◦ vin ◦ efriendlab+ ◦ eout

)
(i).

The function f says, traverse to the outgoing edges of vertex i, then only allow

18 The power set of set A is denoted P(A) and is the set of all subsets of A (i.e. 2A).
The power multiset of A, denoted P̂(A), is the infinite set of all subsets of multisets
of A. This set is infinite because multisets allow for repeated elements [12].

19 The path algebra defined in [16] operates over multi-relational graphs represented
as a tensor. Besides the inclusion of vertex/edge properties used in this article,
the tensor-based path algebra has the same expressivity as the functional model
presented in this section.

20 Filters can be defined as allowing or disallowing certain elements. For allowing,
the symbol + is used. For disallowing, the symbol − is used.
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1

name=Alberto Pepe

2

name=...

3

name=...

4

name=...

friend

friend

friendeout

efriend
lab+

vin �name

Fig. 3. A single path along along the f traversal.

those edges with the label friend, then traverse to the incoming (i.e. head)
vertices on those friend-labeled edges. Finally, of those vertices, return their
name property.21 A single legal path according to this function is diagrammed
in Figure 3. Though not diagrammed for the sake of clarity, the traversal would
also go from vertex 1 to the name of vertex 2 and vertex 3. The function f
is a “higher-order” adjacency defined as the composition of explicit adjacen-
cies and serves as a join of Alberto and his friend’s names.22 The remainder
of this section demonstrates graph traversals in real-world problems-solving
situations.

3.1 Traversing for Recommendation

Recommendation systems are designed to help people deal with the problem
of information overload by filtering information in the system that doesn’t
pertain to the person [14]. In a positive sense, recommendation systems focus
a person’s attention on those resources that are likely to be most relevant
to their particular situation. There is a standard dichotomy in recommenda-
tion research—that of content- vs. collaborative filtering-based recommenda-
tion. The prior deals with recommending resources that share characteristics
(i.e. content) with a set of resources. The latter is concerned with determining
the similarity of resources based upon the similarity of the taste of the peo-
ple modeled within the system [6]. These two seemingly different techniques
to recommendation are conveniently solved using a graph database and two
simple traversal techniques [10, 5]. Figure 4 presents a toy graph data set,
where there exist a set of people, resources, and features related to each other
by likes- and feature-labeled edges. This simple data set is used for the
remaining examples of this subsection.

21 Note that the order of a composition is evaluated from right to left.
22 This is known as a virtual edge in the graph system called DEX [9].
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2

1

2

3

4

likes

likes

likes

7likes

6likes

feature 8

feature

feature 5

p p

p

r

r

r

f

f

likes

Fig. 4. A graph data structure containing people (p), their liked resources (r), and
each resource’s features (f).

Content-Based Recommendation

In order to identify resources that that are similar in features (i.e. content-
based recommendation) to a resource, traverse to all resources that share the
same features. This is accomplished with the following function, f : P̂(V )→
P̂(V ), where

f(i) =
(
εiε− ◦ vout ◦ efeaturelab+ ◦ ein ◦ vin ◦ efeaturelab+ ◦ eout

)
(i).

Assuming i = 3, function f states, traverse to the outgoing edges of resource
vertex 3, only allow feature-labeled edges, and then traverse to the incoming
vertices of those feature-labeled edges. At this point, the traverser is at
feature vertex 8. Next, traverse to the incoming edges of feature vertex 8,
only allow feature-labeled edges, and then traverse to the outgoing vertices of
these feature-labeled edges. At this point, the traverser is at resource vertices
3 and 2. However, since we are trying to identify those resources similar in
content to vertex 3, we need to filter out vertex 3. This is accomplished by
the last stage of the function composition. Thus, given the toy graph data
set, vertex 2 is similar to vertex 3 in content. This traversal is diagrammed in
Figure 5.

Its simple to extend content-based recommendation to problems such as:
“Given what person i likes, what other resources have similar features?” Such
a problem is solved using the previous function f defined above combined
with a new composition that finds all the resources that person i likes. Thus,
if g : P̂(V )→ P̂(V ), where

g(i) =
(
vin ◦ elikeslab+ ◦ eout

)
(i),
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22

3

feature 8

feature

r

r

f

eout

efeature
lab+

vin

ein

efeature
lab+

vout

�i�−

Fig. 5. A traversal that identifies resources that are similar in content to a set of
resources based upon shared features.

then to determine those resources similar in features to the resources that
person vertex 7 likes, compose function f and g: (f ◦ g)(7). Those resources
that share more features in common will be returned more by f ◦ g.23

What has been presented is an example of the use of traversals to do
näıve content-based recommendation. It is possible to extend the functions
presented to normalize paths (e.g. a resource can have every feature and thus,
is related to everything), find novelty (e.g. feature paths that are rare and only
shared by a certain subset of resources), etc. In most cases, when creating a
graph traversal, a developer will compose different predefined paths into a
longer compositions. Along with speed of execution, this is one of the benefits
of using a functional, flow-based model for graph traversals [19]. Moreover,
each component has a high-level meaning (e.g. the resources that a person
likes) and as such, the verbosity of longer compositions can be minimal (e.g. f◦
g).

Collaborative Filtering-Based Recommendation

With collaborative filtering, the objective is to identify a set of resources that
have a high probability of being liked by a person based upon identifying other
people in the system that enjoy similar likes. For example, if person a and
person b share 90% of their liked resources in common, then the remaining 10%
they don’t share in common are candidates for recommendation. Solving the
problem of collaborative filtering using graph traversals can be accomplished

23 Again, path traversal functions are defined over power multisets. In this way, its
possible for a function to return repeated elements. In some situations, dedupli-
cating this set is desired. In other situations, repeated elements can be used to
weight/rank the results.
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with the following traversal. For the sake of clarity, the traversal is broken into
two components: f and g, where f : P̂(V )→ P̂(V ) and g : P̂(V )→ P̂(V ).

f(i) =
(
εiε− ◦ vout ◦ elikelab+ ◦ ein ◦ vin ◦ elikelab+ ◦ eout

)
(i).

Function f traverses to all those people vertices that like the same resources
as person vertex i and who themselves are not vertex i (as a person is ob-
viously similar to themselves and thus, doesn’t contribute anything to the
computation). The more resources liked that a person shares in common with
i, the more traversers will be located at that person’s vertex. In other words,
if person i and person j share 10 liked resources in common, then f(i) will
return person j 10 times. Next, function g is defined as

g(j) =
(
vin ◦ elikelab+ ◦ eout

)
(j).

Function g traverses to all the resources liked by vertex j. In composition,
(g ◦ f)(i) determines all those resources that are liked by those people that
have similar tastes to vertex i. If person j likes 10 resources in common with
person i, then the resources that person j likes will be returned at least 10
times by g ◦ f (perhaps more if a path exists to those resources from another
person vertex as well). Figure 6 diagrams a function path starting from vertex
7. Only one legal path is presented for the sake of diagram clarity.

2

1

2

3

4

likes

likes

likes

7likes

6likes

p p

p

r

r

r

likes

eout

elikes
lab+

vin

ein

elikes
lab+

vout

eoutelikes
lab+vin �i�−�j�−

f

g

Fig. 6. A traversal that identifies resources that are similar in content to a resource
based upon shared features.

With the graph traversal pattern, there exists a single graph data struc-
ture that can be traversed in different ways to expose different types of
recommendations—generally, different types of relationships between vertices.
Being able to mix and match the types of traversals executed alters the seman-
tics of the final rankings and conveniently allows for hybrid recommendation
algorithms to emerge.
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3.2 Traversing Endogenous Indices

A graph is a general-purpose data structure. A graph can be used to model
lists, maps, trees, etc. As such, a graph can model an index. It was assumed,
in §2.2, that a graph database makes use of an external indexing system to
index the properties of its vertices and edges. The reason stated was that spe-
cialized indexing systems are better suited for special-purpose queries such as
those involving full-text search. However, in many cases, there is nothing that
prevents the representation of an index within the graph itself—vertices and
edges can be indexed by other vertices and edges.24 In fact, given the nature of
how vertices and edges directly reference each other in a graph database, index
look-up speeds are comparable. Endogenous indices afford graph databases a
great flexibility in modeling a domain. Not only can objects and their rela-
tionships be modeled (e.g. people and their friendships), but also the indices
that partition the objects into meaningful subsets (e.g. people within a 2D
region of space).25 The remainder of this subsection will discuss the represen-
tation and traversal of a spatial, 2D-index that is explicitly modeled within a
property graph.

The domain of spatial analysis makes use of advanced indexing structures
such as the quadtree [4, 17]. Quadtrees partition a two-dimensional plane into
rectangular boxes based upon the spatial density of the points being indexed.
Figure 7 diagrams how space is partitioned as the density of points increases
within a region of the index.

Fig. 7. A quadtree partition of a plane. This figure is an adaptation of a public
domain image provided courtesy of David Eppstein.

24 One of the primary motivations behind this article is to stress the importance of
thinking of a graph as simply an index of itself, where the primary purpose is to
traverse the various defined indices in ways that elicit problem-solving within the
domain being modeled.

25 Those indices that have a graph-like structure are suited for representing as a
graph. It is noted that not all indices meet this criteria.
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In order to demonstrate how a quadtree index can be represented and tra-
versed, a toy graph data set is presented. This data set is diagrammed in Fig-
ure 8. The top half of Figure 8 represents a quadtree index (vertices 1-9). This

a b
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2 4
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type=quad
bl=[0,0]
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[100,100]
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[0,100]

[100,0]
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7
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type=quad
bl=[0,0]

tr=[50,100]

type=quad
bl=[50,0]

tr=[100,100]

type=quad
bl=[0,50]
tr=[50,100]

type=quad
bl=[50,0]
tr=[100,50]

type=quad
bl=[0,0]
tr=[50,50]

type=quad
bl=[50,50]
tr=[100,100]

type=quad
bl=[50,25]
tr=[75,50]

bl=[25,20]
tr=[90,45]

sub sub

9

9

type=quad
bl=[50,25]
tr=[62,37]

Fig. 8. A quadtree index of a space that contains points of interest. The index is
composed of the vertices 1-9 and the points of interest are the vertices a-i. While not
diagrammed for the sake of clarity, all edges are labeled sub (meaning subsumes) and
each point of interest vertex has an associated bottom-left (bl) property, top-right
(tr) property, and a type property which is equal to “poi.”

quadtree index is partitioning “points of interest” (vertices a-i) located within
the diagrammed plane.26 All vertices maintain three properties—bottom-left

26 The plane depicted does not actually exist as a data structure, but is represented
here to denote how the different vertices lying on that plane are spatially located
(i.e. spatial information is represented explicitly in the properties of the vertices).
Thus, vertices closer to each other on the plane are closer together.
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(bl), top-right (tr), and type. For a quadtree vertex, these properties identify
the two corner points defining a rectangular bounding box (i.e. the region that
the quadtree vertex is indexing) and the vertex type which is equal to “quad”.
For a point of interest vertex, these properties denote the region of space that
the point of interest exists within and the vertex type which is equal to “poi.”

Quadtree vertex 1 denotes the entire region of space being indexed. This
region is defined by its bottom-left (bl) and top-right (tr) corner points—
namely [0, 0] and [100, 100], where blx = 0, bly = 0, trx = 100, and try = 100.
Within the region defined by vertex 1, there are 8 other defined regions that
partition that space into smaller spaces (vertices 2-9). When one vertex sub-
sumes another vertex by a directed edge labeled sub (i.e. subsumes), the
outgoing (i.e. tail) vertex is subsuming the space that is defined by the in-
coming (i.e. head) vertex. Given these properties and edges, identifying point
of interest vertices within a region of space is simply a matter of traversing
the quadtree index in a directed/algorithmic fashion.

In Figure 8, the shaded region represents the spatial query: “Which points
of interest are within the rectangular region defined by the corner points
bl = [25, 20] and tr = [90, 45]?” In order to locate all the points of interest in
this region, iteratively execute the following traversal starting from the root of
the quadtree index (i.e. vertex 1). The function is defined as f : P̂(V )→ P̂(V ),
where

f(i) =
(
ε
try≥20
p+ ◦ εtrx≥25

p+ ◦ εbly≤45
p+ ◦ εblx≤90

p+ ◦ vin ◦ esublab+ ◦ eout
)

(i).

The defining aspect of f is the set of 4 εp+ filters that determine whether the
current vertex is overlapping or within the query rectangle. Those vertices
not overlapping or within the query rectangle are not traversed to. Thus, as
the traversal iterates, fewer and fewer paths are examined and the resulting
point of interest vertices within the query rectangle are converged upon. With
respect to Figure 8, after 3 iterations of f , the traversal will have returned
all the points of interest within the query rectangle. The first iteration, will
traverse to the index vertices 2, 3, and 4. The second iteration will traverse
to the vertices 6, 8 and 9. Note that vertices 5 and 7 do not meet the criteria
of the εp+ filters. Finally, on the third iteration, the traversal returns vertices
c, d, and h. Note that vertex i is not returned because it, like 5 and 7, does
not meet the εp+ filter criteria. A summary of the legal vertices traversed to
at each iteration is enumerate below.

1. 2, 3, 4
2. 6, 9, 8
3. c, d, h

There is a more efficient traversal that can be evaluated. If the bound-
ing box defined by a quadtree vertex is completely subsumed by the query
rectangle (i.e. not just overlapping), then, at that branch in the traversal,
the traverser no longer needs to evaluate the εp+-region filters and, as such,
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can simply iterate all the way down sub-labeled edges to the point of inter-
est vertices knowing that they are completely within the query rectangle. For
example, in Figure 8, once it is realized that vertex 9 is completely within
the query rectangle, then the location properties of vertex d do not need to
be examined.27 The functions that define this traversal and the composition
of these functions into a flow graph is defined below, where A ⊂ P̂(V ) is the
multiset of all quadtree index vertices overlapping or within the query rectan-
gle, B ⊆ A is the multiset of all quadtree index vertices completely within the
query rectangle, and C ⊂ P̂(V ) is the multiset of all point of interest vertices
overlapping or within the query rectangle.

f(i) =
(
ε
try≥20
p+ ◦ εtrx≥25

p+ ◦ εbly≤45
p+ ◦ εblx≤90

p+ ◦ εtype=quad
p+ ◦ vin ◦ esublab+ ◦ eout

)
(i)

g(i) =
(
ε
try≤45
p+ ◦ εtrx≤90

p+ ◦ εbly≥20
p+ ◦ εblx≥25

p+

)
(i)

h(i) =
(
εtype=quad
p+ ◦ vin ◦ esublab+ ◦ eout

)
(i)

s(i) =
(
ε
try≥20
p+ ◦ εtrx≥25

p+ ◦ εbly≤45
p+ ◦ εblx≤90

p+ ◦ εtype=poi
p+ ◦ vin ◦ esublab+ ◦ eout

)
(i)

r(i) =
(
εtype=poi
p+ ◦ vin ◦ esublab+ ◦ eout

)
(i)

C

s

��?
??

??
??

??
g //

C

r

����
��

��
��

�
A

f

��
B

h

��

Function f traverses to those quadtree vertices that overlap or are within the
query rectangle. Function g allows only those quadtree vertices that are com-
pletely within the query rectangle. Function h traverses to subsumed quadtree
vertices. Function s traverses to point of interest vertices that are overlapping
or within the query rectangle. Finally, function r traverses to subsumed point
of interest vertices. Note that functions h and r do no check the bounding
box properties of their domain vertices. As a quadtree becomes large, this be-
comes a more efficient solution to finding all points of interest within a query
rectangle.

The ability to model an index endogenous to a graph allows the domain
modeler to represent not only objects and their relations (e.g. people and their
friendships), but also “meta-objects” and their relationships (e.g. index nodes

27 In general, disregarding bounding box property checks holds for both quadtree
vertices and point of interest vertices that are subsumed by a quadtree vertex
that is completely within the query rectangle.
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and their subsumptions). In this way, the domain modeler can organize their
model according to partitions that make sense to how the model will be used
to solve problems. Moreover, by combining the traversal of an index with the
traversal of a domain, there exists a single unified means by which problems
are solved within a graph database—the graph traversal pattern.

4 Conclusion

Graphs are a flexible modeling construct that can be used to model a domain
and the indices that partition that domain into an efficient, searchable space.
When the relations between the objects of the domain are seen as vertex
partitions, then a graph is simply an index that relates vertices to vertices by
edges. The way in which these vertices relate to each other determines which
graph traversals are most efficient to execute and which problems can be solved
by the graph data structure. Graph databases and the graph traversal pattern
do not require a global analysis of data. For many problems, only local subsets
of the graph need to be traversed to yield a solution. By structuring the graph
in such a way as to minimize traversal steps, limit the use of external indices,
and reduce the number of set-based operations, modelers gain great efficiency
that is difficult to accomplish with other data management solutions.
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